Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS One ; 17(4): e0266740, 2022.
Article in English | MEDLINE | ID: covidwho-1785203

ABSTRACT

The aim of the present study is to detect the presence of SARS-CoV-2 of patients affected by COVID-19 in olfactory mucosa (OM), sampled with nasal brushing (NB) and biopsy, and to assess whether a non-invasive procedure, such as NB, might be used as a large-scale procedure for demonstrating SARS-CoV-2 presence in olfactory neuroepithelium. Nasal brushings obtained from all the COVID-19 patients resulted positive to SARS-CoV-2 immunocytochemistry while controls were negative. Double immunofluorescence showed that SARS-CoV-2 positive cells included supporting cells as well as olfactory neurons and basal cells. OM biopsies showed an uneven distribution of SARS-CoV-2 positivity along the olfactory neuroepithelium, while OM from controls were negative. SARS-CoV-2 was distinctively found in sustentacular cells, olfactory neurons, and basal cells, supporting what was observed in NB. Ultrastructural analysis of OM biopsies showed SARS-CoV-2 viral particles in the cytoplasm of sustentacular cells. This study shows the presence of SARS-CoV-2 at the level of the olfactory neuroepithelium in patients affected by COVID-19. For the first time, we used NB as a rapid non-invasive tool for assessing a potential neuroinvasion by SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Biopsy , COVID-19/diagnosis , Humans , Olfactory Mucosa/pathology
2.
Sci Rep ; 12(1): 628, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1621274

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for a pandemic affecting billions of people worldwide. Apart from the extreme global economic impact, the pandemic will likely have a lasting impact through long-term sequelae not yet fully understood. Fully understanding the mechanisms driving the various symptoms and sequelae of SARS-CoV-2 infection will allow for the eventual development of therapeutics to prevent or treat such life-altering symptoms. In this study, we developed a behavioral test of anosmia in SARS-CoV-2-infected hamsters. We find a moderately strong correlation between the level of anosmia and the score of histological damage within the olfactory epithelium. We also find a moderately strong correlation between the level of anosmia and the thickness of the olfactory epithelium, previously demonstrated to be severely damaged upon infection. Thus, this food-searching behavioral test can act as a simple and effective screening method in a hamster model for various therapeutics for SARS-CoV-2-related anosmia.


Subject(s)
Anosmia/virology , COVID-19/pathology , Olfactory Mucosa/pathology , Animals , Anosmia/pathology , Behavior, Animal , COVID-19/complications , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Mesocricetus , Recovery of Function , Vero Cells
3.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367922

ABSTRACT

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, suffer from respiratory and non-respiratory symptoms. Among these symptoms, the loss of smell has attracted considerable attention. The objectives of this study were to determine which cells are infected, what happens in the olfactory system after viral infection, and how these pathologic changes contribute to olfactory loss. For this purpose, Syrian golden hamsters were used. First, we verified the olfactory structures in the nasal cavity of Syrian golden hamsters, namely the main olfactory epithelium, the vomeronasal organ, and their cellular components. Second, we found angiotensin-converting enzyme 2 expression, a receptor protein of SARS-CoV-2, in both structures and infections of supporting, microvillar, and solitary chemosensory cells. Third, we observed pathological changes in the infected epithelium, including reduced thickness of the mucus layer, detached epithelia, indistinct layers of epithelia, infiltration of inflammatory cells, and apoptotic cells in the overall layers. We concluded that a structurally and functionally altered microenvironment influences olfactory function. We observed the regeneration of the damaged epithelium, and found multilayers of basal cells, indicating that they were activated and proliferating to reconstitute the injured epithelium.


Subject(s)
COVID-19/virology , Chemoreceptor Cells/virology , Olfactory Mucosa/virology , SARS-CoV-2 , Vomeronasal Organ/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , Chemoreceptor Cells/pathology , Male , Mesocricetus , Nasal Cavity/pathology , Nasal Cavity/virology , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/pathology , Olfactory Receptor Neurons/virology , Receptors, Coronavirus/metabolism , Regeneration , SARS-CoV-2/isolation & purification , Vomeronasal Organ/metabolism , Vomeronasal Organ/pathology
4.
Braz J Otorhinolaryngol ; 88(5): 787-793, 2022.
Article in English | MEDLINE | ID: covidwho-1252513

ABSTRACT

INTRODUCTION: Olfactory epithelium biopsy has been useful for studying diverse otorhinolaryngological and neurological diseases, including the potential to better understand the pathophysiology behind COVID-19 olfactory manifestations. However, the safety and efficacy of the technique for obtaining human olfactory epithelium are still not fully established. OBJECTIVE: This study aimed to determine the safety and efficacy of harvesting olfactory epithelium cells, nerve bundles, and olfactory epithelium proper for morphological analysis from the superior nasal septum. METHODS: During nasal surgery, 22 individuals without olfactory complaints underwent olfactory epithelium biopsies from the superior nasal septum. The efficacy of obtaining olfactory epithelium, verification of intact olfactory epithelium and the presence of nerve bundles in biopsies were assessed using immunofluorescence. Safety for the olfactory function was tested psychophysically using both unilateral and bilateral tests before and 1 month after the operative procedure. RESULTS: Olfactory epithelium was found in 59.1% of the subjects. Of the samples, 50% were of the quality necessary for morphological characterization and 90.9% had nerve bundles. There was no difference in the psychophysical scores obtained in the bilateral olfactory test (University of Pennsylvania Smell Identification Test [UPSIT®]) between means before biopsy: 32.3 vs. postoperative: 32.5, p = 0.81. Also, no significant decrease occurred in unilateral testing (mean unilateral test scores 6 vs. 6.2, p = 0.46). None out of the 56 different odorant identification significantly diminished (p > 0.05). CONCLUSION: The technique depicted for olfactory epithelium biopsy is highly effective in obtaining neuronal olfactory tissue, but it has moderate efficacy in achieving samples useful for morphological analysis. Olfactory sensitivity remained intact.


Subject(s)
COVID-19 , Olfaction Disorders , Biopsy/methods , Humans , Nasal Septum/surgery , Neurons , Olfactory Mucosa/pathology , Olfactory Mucosa/surgery , Smell/physiology
5.
Sci Transl Med ; 13(596)2021 06 02.
Article in English | MEDLINE | ID: covidwho-1214961

ABSTRACT

Whereas recent investigations have revealed viral, inflammatory, and vascular factors involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung pathogenesis, the pathophysiology of neurological disorders in coronavirus disease 2019 (COVID-19) remains poorly understood. Olfactory and taste dysfunction are common in COVID-19, especially in mildly symptomatic patients. Here, we conducted a virologic, molecular, and cellular study of the olfactory neuroepithelium of seven patients with COVID-19 presenting with acute loss of smell. We report evidence that the olfactory neuroepithelium is a major site of SARS-CoV2 infection with multiple cell types, including olfactory sensory neurons, support cells, and immune cells, becoming infected. SARS-CoV-2 replication in the olfactory neuroepithelium was associated with local inflammation. Furthermore, we showed that SARS-CoV-2 induced acute anosmia and ageusia in golden Syrian hamsters, lasting as long as the virus remained in the olfactory epithelium and the olfactory bulb. Last, olfactory mucosa sampling from patients showing long-term persistence of COVID-19-associated anosmia revealed the presence of virus transcripts and of SARS-CoV-2-infected cells, together with protracted inflammation. SARS-CoV-2 persistence and associated inflammation in the olfactory neuroepithelium may account for prolonged or relapsing symptoms of COVID-19, such as loss of smell, which should be considered for optimal medical management of this disease.


Subject(s)
Anosmia/virology , Brain/virology , COVID-19 , Olfactory Mucosa/pathology , Animals , COVID-19/pathology , Cricetinae , Humans , Inflammation , Olfactory Mucosa/virology , RNA, Viral , SARS-CoV-2
6.
Neurosci Lett ; 748: 135694, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1188917

ABSTRACT

Patients with COVID-19 often complain of smell and taste disorders (STD). STD emerge early in the course of the disease, seem to be more common in SARS-CoV-2 infection than in other upper respiratory tract infections, and could in some cases persist for long after resolution of respiratory symptoms. Current evidence suggests that STD probably result from a loss of function of olfactory sensory neurons and taste buds, mainly caused by infection, inflammation, and subsequent dysfunction of supporting non-neuronal cells in the mucosa. However, the possible occurrence of other mechanisms leading to chemosensory dysfunction has also been hypothesized, and contrasting data have been reported regarding the direct infection of sensory neurons by SARS-CoV-2. In this mini-review, we summarize the currently available literature on pathogenesis, clinical manifestations, diagnosis, and outcomes of STD in COVID-19 and discuss possible future directions of research on this topic.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2/pathogenicity , Taste Disorders/etiology , COVID-19/immunology , COVID-19/virology , Humans , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Olfaction Disorders/diagnosis , Olfaction Disorders/epidemiology , Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/immunology , Olfactory Receptor Neurons/pathology , SARS-CoV-2/immunology , Smell/physiology , Taste/physiology , Taste Buds/immunology , Taste Buds/pathology , Taste Disorders/diagnosis , Taste Disorders/epidemiology , Taste Disorders/physiopathology
7.
ACS Chem Neurosci ; 12(4): 589-595, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1057681

ABSTRACT

Olfactory dysfunction is one of the most frequent and specific symptoms of coronavirus disease 2019 (COVID-19). Information on the damage and repair of the neuroepithelium and its impact on olfactory function after COVID-19 is still incomplete. While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the ongoing worldwide outbreak of COVID-19, little is known about the changes triggered by SARS-CoV-2 in the olfactory epithelium (OE) at the cellular level. Here, we report profiles of the OE after SARS-CoV-2 infection in golden Syrian hamsters, which is a reliable animal model of COVID-19. We observed severe damage in the OE as early as 3 days postinoculation and regionally specific damage and regeneration of the OE within the nasal cavity; the nasal septal region demonstrated the fastest recovery compared to other regions in the nasal turbinates. These findings suggest that anosmia related to SARS-CoV-2 infection may be fully reversible.


Subject(s)
Anosmia/physiopathology , COVID-19/pathology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/pathology , Regeneration , SARS-CoV-2 , Animals , Anosmia/etiology , COVID-19/complications , COVID-19/physiopathology , Disease Models, Animal , Mesocricetus , Nasal Cavity , Nasal Septum , Olfactory Mucosa/physiology , Olfactory Receptor Neurons/physiology , Organ Size , Turbinates
8.
Cells Tissues Organs ; 209(4-6): 155-164, 2020.
Article in English | MEDLINE | ID: covidwho-1042717

ABSTRACT

Usually, pandemic COVID-19 disease, caused by SARS-CoV2, presents with mild respiratory symptoms such as fever, cough, but frequently also with anosmia and neurological symptoms. Virus-cell fusion is mediated by angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) with their organ expression pattern determining viral tropism. Clinical presentation suggests rapid viral dissemination to the central nervous system leading frequently to severe symptoms including viral meningitis. Here, we provide a comprehensive expression landscape of ACE2 and TMPRSS2 proteins across human postmortem nasal and olfactory tissue. Sagittal sections through the human nose complemented with immunolabelling of respective cell types represent different anatomically defined regions including olfactory epithelium, respiratory epithelium of the nasal conchae and the paranasal sinuses along with the hardly accessible human olfactory bulb. ACE2 can be detected in the olfactory epithelium as well as in the respiratory epithelium of the nasal septum, the nasal conchae, and the paranasal sinuses. ACE2 is located in the sustentacular cells and in the glandular cells in the olfactory epithelium as well as in the basal cells, glandular cells, and epithelial cells of the respiratory epithelium. Intriguingly, ACE2 is not expressed in mature or immature olfactory receptor neurons and basal cells in the olfactory epithelium. Similarly, ACE2 is not localized in the olfactory receptor neurons albeit the olfactory bulb is positive. Vice versa, TMPRSS2 can also be detected in the sustentacular cells and the glandular cells of the olfactory epithelium. Our findings provide the basic anatomical evidence for the expression of ACE2 and TMPRSS2 in the human nose, olfactory epithelium, and olfactory bulb. Thus, they are substantial for future studies that aim to elucidate the symptom of SARS-CoV2 induced anosmia via the olfactory pathway.


Subject(s)
Angiotensin-Converting Enzyme 2/analysis , COVID-19/pathology , Nasal Mucosa/pathology , Olfactory Bulb/pathology , SARS-CoV-2/isolation & purification , Serine Endopeptidases/analysis , COVID-19/diagnosis , Humans , Nasal Mucosa/virology , Nose/pathology , Nose/virology , Olfactory Bulb/virology , Olfactory Mucosa/pathology , Olfactory Mucosa/virology
9.
J Laryngol Otol ; 134(12): 1123-1127, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-943804

ABSTRACT

BACKGROUND: Olfactory dysfunction represents one of the most frequent symptoms of coronavirus disease 2019, affecting about 70 per cent of patients. However, the pathogenesis of the olfactory dysfunction in coronavirus disease 2019 has not yet been elucidated. CASE REPORT: This report presents the radiological and histopathological findings of a patient who presented with anosmia persisting for more than three months after infection with severe acute respiratory syndrome coronavirus-2. CONCLUSION: The biopsy demonstrated significant disruption of the olfactory epithelium. This shifts the focus away from invasion of the olfactory bulb and encourages further studies of treatments targeted at the surface epithelium.


Subject(s)
Anosmia/etiology , COVID-19/complications , Olfaction Disorders/physiopathology , Olfactory Mucosa/pathology , Anosmia/diagnosis , Anosmia/drug therapy , Anosmia/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Cortisone/administration & dosage , Cortisone/therapeutic use , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Olfactory Bulb/diagnostic imaging , Olfactory Mucosa/virology , SARS-CoV-2/genetics , Treatment Outcome
10.
Otolaryngol Head Neck Surg ; 164(6): 1337-1344, 2021 06.
Article in English | MEDLINE | ID: covidwho-852952

ABSTRACT

OBJECTIVE: This study aimed to investigate the differences in olfactory cleft (OC) morphology in coronavirus disease 2019 (COVID-19) anosmia compared to control subjects and postviral anosmia related to infection other than severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). STUDY DESIGN: Prospective. SETTING: This study comprises 91 cases, including 24 cases with anosmia due to SARS-CoV-2, 38 patients with olfactory dysfunction (OD) due to viral infection other than SARS-CoV-2, and a control group of 29 normosmic cases. METHODS: All cases had paranasal sinus computed tomography (CT), and cases with OD had magnetic resonance imaging (MRI) dedicated to the olfactory nerve. The OC width and volumes were measured on CT, and T2-weighted signal intensity (SI), olfactory bulb volumes, and olfactory sulcus depths were assessed on MRI. RESULTS: This study showed 3 major findings: the right and left OC widths were significantly wider in anosmic patients due to SARS-CoV-2 (group 1) or OD due to non-SARS-CoV-2 viral infection (group 2) when compared to healthy controls. OC volumes were significantly higher in group 1 or 2 than in healthy controls, and T2 SI of OC area was higher in groups 1 and 2 than in healthy controls. There was no significant difference in olfactory bulb volumes and olfactory sulcus depths on MRI among groups 1 and 2. CONCLUSION: In this study, patients with COVID-19 anosmia had higher OC widths and volumes compared to control subjects. In addition, there was higher T2 SI of the olfactory bulb in COVID-19 anosmia compared to control subjects, suggesting underlying inflammatory changes. There was a significant negative correlation between these morphological findings and threshold discrimination identification scores. LEVEL OF EVIDENCE: Level 4.


Subject(s)
Anosmia/pathology , Anosmia/virology , COVID-19/complications , Nasal Cavity/pathology , Olfactory Bulb/pathology , Adult , Anosmia/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/pathology , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nasal Cavity/diagnostic imaging , Olfactory Bulb/diagnostic imaging , Olfactory Mucosa/diagnostic imaging , Olfactory Mucosa/pathology , Organ Size , Prospective Studies , Tomography, X-Ray Computed
11.
Am J Rhinol Allergy ; 35(3): 323-333, 2021 May.
Article in English | MEDLINE | ID: covidwho-760510

ABSTRACT

BACKGROUND: Post-viral olfactory dysfunction is a common cause of both short- and long-term smell alteration. The coronavirus pandemic further highlights the importance of post-viral olfactory dysfunction. Currently, a comprehensive review of the neural mechanism underpinning post-viral olfactory dysfunction is lacking. OBJECTIVES: To synthesize the existing primary literature related to olfactory dysfunction secondary to viral infection, detail the underlying pathophysiological mechanisms, highlight relevance for the current COVID-19 pandemic, and identify high impact areas of future research. METHODS: PubMed and Embase were searched to identify studies reporting primary scientific data on post-viral olfactory dysfunction. Results were supplemented by manual searches. Studies were categorized into animal and human studies for final analysis and summary. RESULTS: A total of 38 animal studies and 7 human studies met inclusion criteria and were analyzed. There was significant variability in study design, experimental model, and outcome measured. Viral effects on the olfactory system varies significantly based on viral substrain but generally include damage or alteration in components of the olfactory epithelium and/or the olfactory bulb. CONCLUSIONS: The mechanism of post-viral olfactory dysfunction is highly complex, virus-dependent, and involves a combination of insults at multiple levels of the olfactory pathway. This will have important implications for future diagnostic and therapeutic developments for patients infected with COVID-19.


Subject(s)
COVID-19/complications , Olfaction Disorders/physiopathology , Animals , COVID-19/epidemiology , COVID-19/pathology , COVID-19/physiopathology , Humans , Olfaction Disorders/epidemiology , Olfaction Disorders/pathology , Olfactory Bulb/pathology , Olfactory Mucosa/pathology , Olfactory Pathways/pathology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Species Specificity , Post-Acute COVID-19 Syndrome
12.
Brain Behav Immun ; 89: 579-586, 2020 10.
Article in English | MEDLINE | ID: covidwho-656807

ABSTRACT

Anosmia is one of the most prevalent symptoms of SARS-CoV-2 infection during the COVID-19 pandemic. However, the cellular mechanism behind the sudden loss of smell has not yet been investigated. The initial step of odour detection takes place in the pseudostratified olfactory epithelium (OE) mainly composed of olfactory sensory neurons surrounded by supporting cells known as sustentacular cells. The olfactory neurons project their axons to the olfactory bulb in the central nervous system offering a potential pathway for pathogens to enter the central nervous system by bypassing the blood brain barrier. In the present study, we explored the impact of SARS-CoV-2 infection on the olfactory system in golden Syrian hamsters. We observed massive damage of the OE as early as 2 days post nasal instillation of SARS-CoV-2, resulting in a major loss of cilia necessary for odour detection. These damages were associated with infection of a large proportion of sustentacular cells but not of olfactory neurons, and we did not detect any presence of the virus in the olfactory bulbs. We observed massive infiltration of immune cells in the OE and lamina propria of infected animals, which may contribute to the desquamation of the OE. The OE was partially restored 14 days post infection. Anosmia observed in COVID-19 patient is therefore likely to be linked to a massive and fast desquamation of the OE following sustentacular cells infection with SARS-CoV-2 and subsequent recruitment of immune cells in the OE and lamina propria.


Subject(s)
Coronavirus Infections/pathology , Olfactory Bulb/pathology , Olfactory Mucosa/pathology , Pneumonia, Viral/pathology , Animals , Betacoronavirus , COVID-19 , Cilia/pathology , Coronavirus Infections/physiopathology , Mesocricetus , Olfaction Disorders/pathology , Olfaction Disorders/physiopathology , Olfactory Bulb/virology , Olfactory Mucosa/virology , Olfactory Receptor Neurons/pathology , Olfactory Receptor Neurons/virology , Pandemics , Pneumonia, Viral/physiopathology , SARS-CoV-2
14.
ACS Chem Neurosci ; 11(9): 1206-1209, 2020 05 06.
Article in English | MEDLINE | ID: covidwho-101631

ABSTRACT

The novel coronavirus SARS-CoV-2, which was identified after a recent outbreak in Wuhan, China, in December 2019, has kept the whole world in tenterhooks due to its severe life-threatening nature of the infection. The virus is unlike its previous counterparts, SARS-CoV and MERS-CoV, or anything the world has encountered before both in terms of virulence and severity of the infection. If scientific reports relevant to the SARS-CoV-2 virus are noted, it can be seen that the virus owes much of its killer properties to its unique structure that has a stronger binding affinity with the human angiotensin-converting enzyme 2 (hACE2) protein, which the viruses utilize as an entry point to gain accesses to its hosts. Recent reports suggest that it is not just the lung that the virus may be targeting; the human brain may soon emerge as the new abode of the virus. Already instances of patients with COVID-19 have been reported with mild (anosmia and ageusia) to severe (encephalopathy) neurological manifestations, and if that is so, then it gives us more reasons to be frightened of this killer virus. Keeping in mind that the situation does not worsen from here, immediate awareness and more thorough research regarding the neuroinvasive nature of the virus is the immediate need of the hour. Scientists globally also need to up their game to design more specific therapeutic strategies with the available information to counteract the pandemic. In this Viewpoint, we provide a brief outline of the currently known neurological manifestations of COVID-19 and discuss some probable ways to design therapeutic strategies to overcome the present global crisis.


Subject(s)
Betacoronavirus/pathogenicity , Brain/virology , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Aged , Ageusia/virology , Angiotensin-Converting Enzyme 2 , Autopsy , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Betacoronavirus/chemistry , Betacoronavirus/metabolism , Brain/pathology , Brain/physiopathology , Brain Diseases/immunology , Brain Diseases/pathology , Brain Diseases/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cytokines/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , MicroRNAs/genetics , Olfaction Disorders/virology , Olfactory Mucosa/pathology , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA Interference , Receptors, Nicotinic/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Smoking/metabolism , Smoking/pathology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL